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so that the maximum error of the approximation on 
the set of points 262z, . . .  2o 

Ema, x = max{] P2v/(~i) - G2i)I }. (31) 
I<_t<Q 

is a minimum. Then G(x) is said to be at best Tcheby- 
cheff or minimax approximation to Plu(x) on the set 
{21,:~2, . . .  2o}. The Ng can most conveniently be de- 
termined using the flexible and powerful methods of 
linear programming (Rice, 1964). 

The above approach has reduced the problem of ex- 
tracting the periodic vector set from the Patterson func- 
tion to a problem in linear approximation. There are 
many mathematical questions of a theoretical nature 
involved in the determination of the interpolatory and 
Tchebycheff approximations, and these cannot be 
treated adequately in this paper; the interested reader 
is referred to the excellent book of Rice (1964) for a 
thorough treatment. In any case, the application of 
(30) and (31) is not limited by theoretical considera- 
tions; the limitations are imposed by problems of num- 
erical computation. Numerical difficulties may arise 
when the approximation problem is formulated in such 
a way that an extremely large system of equations re- 
suits. For example, a three-dimensional interpolatory 
solution of the Patterson function, in which 30 divi- 
sional points were used along the a, b, and c axes, 
would require the solution of 27,000 equations in 
27,000 unknowns! While such systems can be solved in 
practice (provided the system is mathematically 
stable), there would appear to be little reason for doing 
so; in the present method two- and three-dimensional 

solutions appear to offer no significant advantages over 
the one-dimensional formulations dealt with in this 
paper. The details involved in the practical computa- 
tion of the interpolatory approximations have been 
briefly described in a previous paper (Goldak, 1969). 
The more powerful Tchebycheff methods will be dealt 
with in a following paper. 

This work was supported by a National Research 
Council grant. The author is also grateful to Dean A. D. 
Booth for discussion and for his general support of the 
author's crystallographic work. 
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The Determination of Cyelieity, Hexagonality, and other Properties of Polytypes 

BY K. DORNBERGER-SCHIFF AND H. SCHMITTLER 
Deutsche Akademie der Wissenschaften zu Berlin, Zentralinstitut fiir physikalische Chemie, 

Berlin-Adlershof, Germany (DDR) 

AND M. FARKAS-JAHNKE 
Research Institute for Technical Physics of  the Hungarian Academy of  Sciences, Budapest, Hungary 

(Received 17 August 1970) 

The cyclicity of a polytype, the percentage of hexagonality, and the distribution of figures '1' among 
even and odd places of the Zhdanov symbol may be deduced directly from measured intensities. These 
values are given for a 66R polytype whose sequence has been determined earlier and for a hypothetical 
l14R polytype. A discussion is given of the errors in these values originating from the errors of the 
[SI z values used and of the errors produced, if instead of the exact formula for the cyclicity an approxi- 
mation advocated by Mardix and his coworkers is used. 

Introduction 

A method for the direct determination of periodic 
polytypes of ZnS, SiC or similar substances from meas- 
ured intensities of X-ray diagrams has been published 

by two of us (Farkas-Jahnke; 1966, Dornberger-Schiff 
& Farkas-Jahnke 1970) and successfully applied (Go- 
rues de Mesquita, 1968; Farkas-Jahnke & Dornberger- 
Schiff, 1970). The method is applicable if rather ac- 
curate values IS(kl)lZ=lF(hkl)lZ/lFo(hkl)] 2 are ob- 
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tainable from the measured intensities [F(hkl)l 2 and 
from the Fourier transform Fo(hkl) of the single 
layer. If these values possess too wide limits of er- 
ror, then the method becomes rather time consuming, 
if the period of the polytype is fairly large. Four char- 
acteristic values for any polytype may, however, be 
determined directly and in a very simple way, even if 
the experimental values are not so accurate. On the 
theoretical basis underlying the method mentioned 
above, these characteristic values are the cyclicity, the 
percentage hexagonality, and the numbers of figures 
'1' on even and on odd places of the Zhdanov symbol, 
respectively. Depending on the margin of error of the 
experimental data these characteristic values may be 
determined unequivocally or with a certain margin of 
error (see below). 

We characterize any periodic polytype by a periodic 
sequence of figures '1' and '0', i.e. by a periodic binary 
number. In this sequence of figures, '1' and '0' stand 
for shifts converting one layer into the next, either by 
a vector b/3 + e/M or by - b/3 + c/M, respectively (this 
notation is similar to that introduced by H~gg, except 
that we use the figures instead o f ' + '  and ' - ' ) .  Here 
b and c are orthohexagonal basic vectors, M is equal 
to the number of layers traversing the lattice vector c. 
We denote further by [~ ,~2, . . . ,av]  the rate of occur- 
rence within a period, of a partial sequence cq, ~2, • •., av. 
The 'Patterson function' zr(m,p) is defined as 

rc(m, p) 

N q-1  M - - 1  

3M2 k=~_l t~ ° [S(kl)12.exp-2rci(k.m/3 + lp/M) 

(M = N for hexagonal, M = 3N for rhombohedral poly- 
types). The values S(hkl)=S(kl)  do not - except for 
experimental errors - depend on h and are equal to 

S(kl) = S(k + 3n' , l+ mn")  = S(kl) 
t n t t  for any pair of integral numbers n ,  . Thus for k not 

divisible by 3, there are N essentially different values 
of S(kl). Sets of IS(kl)l values may thus be obtained 
from [F(hkl)l values with different indices h and/or k. 
The accuracy of the ]S(kl)[ values obtained may be 
improved by taking mean values of [S(kl)] which ought 
to be equal. 

Cyelieity 

The cyclicity C is defined as the difference between the 
number of figures '1' and the number of figures '0' per 
period, divided by the length N of the period, i.e. 

C =  [11-[0] = zr(1,1)-~z(- 1,1) 
N N 

As described earlier (Dornberger-Schiff & Farkas- 
Jahnke, 1970), the zr(rn,p) values and thus the value of 
C may be obtained from the measured intensities. 

Mardix, Steinberger & Kalman (1970) have recently 
proposed a method for the determination of the cyc- 
licity. This method differs from our method only in 

the following points: they introduce an approximation, 
neglecting in the formula for the cyclicity C, a factor 
/tn, for which 1 < Pn < 1.1 holds. They also regard it as 
satisfactory approximation, if the lS(k/)l 2 values are 
replaced by the [F(hkl)] 2 values for constant h. Besides, 
they state that a fairly large margin of error can be 
tolerated for the measured intensities, without affect- 
ing the final results. Unfortunately, although the au- 
thors have investigated a considerable number of poly- 
types and thus have sufficient experimental data at 
their disposal, they give not a single example of the 
determination of the cyclicity from quantitative inten- 
sity data, and do not discuss the influence of experi- 
mental errors on the results. When discussing examples 
(see below), the justification of the procedure advocated 
by Mardix et al. will also be discussed. 

Hexagonality 

The percentage hexagonality ~ is the number of figures 
in the Zhdanov symbol, divided by N. In our binary 
notation, this is equal to 

[01]+[10] 
~'~' - ' N 

because [01] denotes the rate of occurrence per period 
of a figure '0' followed by a figure '1', and so on. As 
has been shown earlier, [01] + [10] = 1r(0,2) and thus 

a = zc(0,2)/N. 

For obvious reasons, a is always an even number. 

Number of figures '1' in the Zhdanov symbol 

Any figure '1' in the Zhdanov symbol gives rise either 
to a partial sequence '010', or to a partial sequence 
'101' in binary notation. From the relations between 
the rates of occurrence of partial sequences of length 
2 and 3, earlier described, and from the meaning of the 
zc values, it follows that 

[010] = zc(0,2) - 2 .  re ( l ,3) - I ,  re(- 1,3) 
[101] = re(0,2) - 1 .  rc(1,3) - 2 .  re(- 1,3) 

We may choose the direction of axes and the origin 
in such a way that zc(1,1)<re(-1,1) and that the first 
figure in the Zhdanov symbol refers to a sequence of 
figures '1'. Then [010] is the number of figures '1' in 
odd places in the Zhdanov symbol, [101] the number 
of figures '1' in even places of the symbol. The sum 
[101] + [010] is thus the total number of figures ' 1' in 
the Zhdanov symbol; the values [101] and [010] taken 
separately show the distribution of these figures '1' on 
even and odd places of the symbol, respectively. 

Examples 

The n values calculated from mean values of the sets 
of [S(kl)] 2 values have been obtained for a 66R poly- 
type (Farkas-Jahnke & Dornberger-Schiff, 1970), and 
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the polytype has been determined with the help of our 
method. This determination required the discussion of 
a number  of sets of  integral rr(m,p) values, before the 
correct polytype could be obtained. The characteristic 
values mentioned above, as computed from re(0,2), 
re(l,3) and re(-1,3) are given in Table 1 (column 2). 
In  column 4 the corresponding values are given which 
apply to the polytype present. In columns 5 to 8, values 
of  the cyclicity calculated as advocated by Mardix  et 
al. (1970) are given: columns 5 to 7 give the values 
calculated for three different sets of  IF[ 2 values; in the 
last column a mean  value for ISl 2 was used. 

Table 1. Some characteristic values for the polytype 
with the Zhdanov symbol (7 7 5 3)3 

(1) 
C . N  
o~ . N 

[OLO] 
[lOl] 

Column (2) 
(3) 
(4) 

(5), (6), (7) 

(8) 

(2) (3) (4) (5) (6) (7) (8) 
2.3 2 2 5.8 0.8 3.3 2.7 
4.8 4 4 . . . .  
O.3 0 0 . . . .  
0.5 0 or 1 0 . . . .  

Values obtained from experimental ISI 2 values. 
Integral values compatible with values (2). 
Values for the polytype present. 
Values for the cyclicity obtained from one par- 
ticular set of IF[ 2 values, respectively, following 
the method described by Mardix et al., C. N ~ - 
I '--J' .  
Value for the cyclicity obtained from mean val- 
ues of the sets of IS[ 2 values, using the formula 
given by Mardix et al. 

In order to show the possible influence of experimen- 
tal errors, we took as a second example a hypothetical  
polytype with Zhdanov symbol  (10 5 6 2 4 1 2 4 2 2)3 
for which we calculated theoretical IS[ 2 values as well 
as IFI 2 values for (]1l). Table 2 shows in rows 2 to 5 
the result of  the calculation of the values C. N, ~. N, 
[010] and [101] f rom the ISI z values. As 'case 1', the 
ISI 2 values were taken without errors. Thus the true 
values for C.N,  e .N ,  [010] and [101] result. As cases 
2 to 5 statistical errors were introduced as follows: for 
case 2 and 3 the mean value of  these errors was about 
30 %, for case 4 and 5 about hal f  this value. 

The value of C. N must be even, if  N is even, and 
if  only the reflexions with 1 = 3n-1 are present, C - N =  
3 n +  1. Thus in our case, only values . . .  4, 10, 16, . . .  
need be considered for C.N.  In case 2 we would be in 
doubt  whether 4 or 10 is correct, in cases 3, 4, and 5 the 
conclusion N. C =  10 could have been drawn quite 
safely. 

The last row was calculated in order to test the 
mode of procedure advocated by Mardix and cowor- 
kers. Although for the error-free calculation their ap- 
proximat ion is certainly satisfactory, we see that, for 
example, in case 3 the correct value could not have 
been deduced unequivocally. Even in case 5, with a 
mean error of  only 15 % the true value might have been 
doubtful.  

The figures of Table 2 seem to indicate that in order 
to obtain values within ± 2 for C. N, a mean error of  

about  20 % in IS[ 2 may be tolerated, if  the exact formula  
is used, whereas the same error in C. N would result 
from ( I ' -J ' )  values calculated from [FI z values with a 
mean error of  only about 12 %. If for example 16 sets 
of  IF[ z values are used to calculate the ]SI 2 values 
(which is possible in most cases), a mean error of  50 % 
in the IF[  2 values would lead to an accuracy in the 
mean value of  ISI 2 well below what  is required. In 
cases where the intensity corresponds to IFI rather than 
IF[ 2, the intensities would be required to have a mean 
error of  not more than 35 to 40 % which is well within 
possibilities with fihn methods. Following the proce- 
dure advocated by Mardix et al., intensities with an 
accuracy of about 6 % would be required. The accuracy 
required for an unequivocal  determination of  N.  C 
rises with increasing N. Thus for smaller N ( N < 3 8 )  
the margin  of  error to be tolerated is probably  some- 
what larger, for larger N it is still smaller. 

Table 2. Some characteristic values for a hypothetical 
polytype with the Zhdanov symbol (10 5 6 2 4 1 2 4 2 2)3 

case 1 case 2 case 3 case 4 case 5 

C .  N 10 6-8 11.7 8-5 10.8 
. N 10 14.4 11.2 12.1 10-6 

[010l 0 2.5 1.1 1.2 0.5 
[1011 1 2"8 2"1 1"8 1"5 
I ' - J "  11.3 7.7 13.2 9.6 12.2 

Case 1 Values obtained from IS] 2 values without errors. 
2 and 3 Values obtained from ISI2 values with statistical er- 

rors of about 30 %. 
4 and 5 Values obtained from ISI 2 values with statistical er- 

rors of about 15 %. 

F rom the values obtained for ~. N which must  neces- 
sarily be even we may conclude that with a mean  error 
of  30 % the true value may be out by as much as 4 f rom 
the nearest evenvalue obtained, with a mean error of  15 % 
it still may be out by 2. The numbers  of figures '1' in 
even or odd places of the Zhdanov symbol would 
obviously require a still more accurate determination 
of  the [SI z values, because these numbers  may take on 
any integral value. For mean errors of  30% these 
values may  be out by 2 or even 3, with mean error of  
15 % by 1 or 2 at the most. 

Conclusions 

A unique determinat ion of a polytype with fairly long 
period requires as good lSl z= IF[Z/lEo[ z values as pos- 
sible. For  this purpose intensities should be measured 
with fair accuracy and for as many sets of  reflexions 
as possible, so that mean values from several sets of  
Igl 2 values may  be obtained. F rom these values the 
'Pattersonian function'  n(m,p) may be directly calcu- 
lated with the help of which the entire polytype se- 
quence may  be determined as described earlier. Even i f  
the accuracy of the [SI z values is not sufficient to make 
this method applicable without a great amount  of effort, 
the cyclicity C, the percentage ofhexagonal i ty  ~, and the 
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number of figures '1' in the Zhdanov symbol as well 
as their distribution among the even and odd places of 
the symbol may be directly obtained with certain 
limits of error from the values n(0,2), n(1,3), and 
n ( -1 ,3 )  obtainable from the set of ISI 2 values. 

As the examples show, the application of the mode 
of procedure advocated by Mardix et al. may lead to 
erroneous conclusions for the cyclicity. 
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A Neutron Diffraction Search for Non-centrosymmetric Thermal Oscillations 
in Germanium and Silicon* 
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A neutron diffraction study was made of the 222 reflection of germanium and silicon between 
the temperatures of 25 and 500 °C. Care was taken to reduce effects of simultaneous and higher order 
reflections. Extinction effects were considered, as nearly perfect crystals were employed in the study. 
Within the sensitivity of the experiment, no 222 neutron intensity was detected. The resulting upper 
limit placed on fl, the cubic atomic potential constant, is roughly one half of a previously suggested value. 

Introduct ion 

The inclusion of an anticentrosymmetric potential con- 
stant fl as a perturbation in the usual Einstein model 
derivation of the Debye-Waller factor has been used 
to accurately describe the unique temperature depen- 
dence of the strengths of certain reflections of UO2, 
CaF2, and BaF2 as observed in the neutron diffraction 
work of Willis (1963a, b, 1965). Dawson & Willis 
(1967) have further suggested that the anticentro- 
symmetric site symmetry of diamond structured crys- 
tals also allows the existence of such an anharmonic 
term in the binding potential experienced by each 
atom. 

In such crystals, inclusion of this term in the deriva- 
tion of the Debye-Waller factor results in a non-zero 
structure factor for the forbidden reflections (h + k + l-- 
4n+2,  n=0 ,  1 , 2 , . . . )  of the form 

F~kt exp {-M(T)}= - i 8 b  ao 

exp{_  n2kT +k2+12) 

* Work supported by the United States Atomic Energy 
Commission. 

t Present address: Department of Physics, Brookhaven Na- 
tional Laboratory, Upton, New York 11973~ U.S.A, 

(where fl is a small perturbation on the harmonic 
potential constant a). In the above equation, b is the 
nuclear scattering length of the atom, a0 the cube 
edge, k Boltzmann's constant, T the absolute temper- 
ature, and h, k, l, the Miller indices of the reflection 
involved. The exponential is the harmonic Debyc- 
Waller factor. This structure factor is purely imaginary 
(from symmetry considerations only; this does not 
imply an attenuation factor), and is directly propor- 
tional to the anticentrosymmetric potential constant fl, 
the product of the Miller indices, and the square of the 
absolute temperature. The effect should thus be 
strongest at high temperatures in forbidden reflections 
of high order. 

One may reproduce the above in the formalism of 
quantum mechanics, by tetrahedrally perturbing a 
spherical harmonic oscillator. Such an approach pre- 
dicts a non-zero structure factor when T=  0°K due to 
zero state motion. When T is greater than one quarter 
of the Debye temperature of the materials, however 
(the Debye temperatures of silicon and germanium re- 
ported by Batterman & Chipman (1962) are 543 and 
290°K respectively), the classical and quantum me- 
chanical predictions are indistinguishable. 

Interaction of the neutrons with the anticentro- 
symmetrically distributed binding electrons of these 
materials would also produce Bragg scattering in 
otherwise forbidden reflections, Such interactions, 
however, are very weak (Krohn & Ringo, 1966; 
Obermair, 1967), and can safely be ignored here. 


